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A set of reals 𝑆 ⊂ R is midpoint-free if it has no subset {𝑎, 𝑏, 𝑐} ⊆ 𝑆 such that 𝑎 < 𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. If 𝑆 ⊂ 𝑋 ⊆ R and 𝑆 is
midpoint-free, it is amaximal midpoint-free subset of𝑋 if there is no midpoint-free set 𝑇 such that 𝑆 ⊂ 𝑇 ⊆ 𝑋. In each of the cases
𝑋 = Z+,Z,Q+,Q,R+,R, we determine two maximal midpoint-free subsets of 𝑋 characterised by digit constraints on the base 3
representations of their members.

1. Introduction

Let us say that a set of three real numbers {𝑎, 𝑏, 𝑐} ⊂ R is a
midpoint triple if it satisfies 𝑎 < 𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. In this
case 𝑏 is the midpoint of the set, 𝑎 is its lower endpoint, and 𝑐

is its upper endpoint. This geometric viewpoint immediately
suggests the main objective of this paper, which is to identify
several significant subsets of R that contain no midpoint
triple.

A midpoint-free subset of R is any set that contains no
midpoint triple. For instance, the set {2𝑛 : 𝑛 ∈ Z} of powers
of 2 is midpoint-free, since appropriate scaling shows that the
sum of two distinct powers of 2 is never equal to a power of
2. Note that if 𝑆 ⊆ R and 𝑐𝑆 + 𝑑 := {𝑐𝑠 + 𝑑 : 𝑠 ∈ 𝑆}, then 𝑐𝑆 + 𝑑

is midpoint-free, for any {𝑐, 𝑑} ⊂ R with 𝑐 ̸= 0, if and only if
𝑆 is midpoint-free.

If 𝑆 ⊂ 𝑋 ⊆ R and 𝑆 is midpoint-free, then 𝑆 is amaximal
midpoint-free subset of 𝑋 if there is a midpoint triple in any
set 𝑇 such that 𝑆 ⊂ 𝑇 ⊆ 𝑋. (In this case, any 𝑥 ∈ 𝑋 \ 𝑆 is
a member of a midpoint triple in 𝑆 ∪ {𝑥}.) If 𝑋 is a “natural”
subset ofR, such as the nonnegative integersZ+, the rationals
Q, or indeed R itself, it is of considerable interest to identify
maximal midpoint-free subsets of𝑋.

Alternatively, any set {𝑎, 𝑏, 𝑐} such that 𝑎 < 𝑏 < 𝑐

and 𝑎 + 𝑐 = 2𝑏 can be viewed as a 3-term arithmetic
progression (A.P.) with first term 𝑎, midterm 𝑏, and last
term 𝑐. This arithmetic viewpoint has led to many studies
of sequences of positive integers in which there is no 3-term
A.P., raising questions such as the following. How large is a

maximal subset of the first 𝑛 positive integers that contains
no 3-term A.P.? (See [1] for data.) Given a finite set 𝑆 of
positive integers with no 3-term A.P., what does its greedy
algorithm extension look like? How does it compare with
a largest possible subset of the first 𝑛 positive integers that
contains 𝑆 and has no 3-term A.P.? Under what conditions
must a subset of the positive integers contain a 3-term A.P.?
Among those who have made major contributions to our
understanding of these questions, one must list such lumi-
naries as Van der Waerden, Erdős, Turán, Rado, Behrend,
Roth, Graham, and Szemerédi. For a compact survey and
extensive bibliography of such investigations, see Guy [2].
As an example of recent work in this area, see Dybizbański
[3].

In contrast with the usual arithmetic viewpoint, the
geometric viewpoint adopted here takes us in an apparently
novel direction, where the sets of interest are most naturally
viewed as subsets ofR.

2. Notational Conventions

In what follows, a key tool for discussing midpoint triples
will be base 3 representations of the real numbers, so relevant
notational conventions will now be specified. If 𝑟 ∈ R, 𝑟 > 0

and

𝑟 = ∑

𝑖∈Z

𝑑
𝑖
3
𝑖 with 𝑑

𝑖
∈ {0, 1, 2} , (1)
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then the two-way infinite string

d := ⋅ ⋅ ⋅ 𝑑
2
𝑑
1
𝑑
0
⋅ 𝑑
−1
𝑑
−2

⋅ ⋅ ⋅ (2)

is a base 3 representation of 𝑟 and 𝑑
𝑖
is the digit in place 𝑖

of d. If 𝑑
𝑖
∈ {0, 1} for infinitely many 𝑖 < 0, then d is a

regular base 3 representation of 𝑟; otherwise, d is a singular
base 3 representation of 𝑟, and there is an integer 𝑘 such that
𝑑
𝑖
= 2 for all 𝑖 < 𝑘. The regular base 3 representation of

𝑟 is unique, and if 𝑟 has a singular base 3 representation,
that is also unique. If 𝑋 is some “natural” subset of R and
𝐷 ⊂ {0, 1, 2}, it will be convenient to use𝑋

3
(𝐷) to denote the

set of all members of𝑋with a base 3 representation restricted
to𝐷.This notation adapts to cases where𝐷 is a configuration
of base 3 digits; thus, when𝐷 is a finite string of base 3 digits,
𝑋
3
([𝐷]) will denote the set of all members of 𝑋 with a base

3 representation which includes a one-way infinite string of
recurring blocks𝐷.

Since 𝑟 > 0, at least one of the digits is nonzero. The
leading digit of d is the digit 𝑑

ℎ
> 0, such that 𝑑

𝑖
= 0 for

all 𝑖 > ℎ. The trivial zeros of d are all the digits 𝑑
𝑖
= 0 with

𝑖 > max{ℎ, 0}. Conventionally these are suppressed (i.e., kept
implicit) when listing d. If ℎ < 0, so the leading digit 𝑑

ℎ

occupies a negative place, the placeholder zeros of d are all the
digits 𝑑

𝑖
= 0 with 0 ≥ 𝑖 > ℎ. If there is an integer 𝑘 ≤ ℎ

such that 𝑑
𝑘
> 0 and 𝑑

𝑖
= 0 for all 𝑖 < 𝑘, then d is a regular

representation, 𝑑
𝑘
is its trailing digit, its optional zeros are all

the digits 𝑑
𝑖
= 0 with 𝑖 < min{𝑘, 0}, and if 𝑘 > 0 then its

placeholder zeros are the digits 𝑑
𝑖
= 0with 0 ≤ 𝑖 < 𝑘. If d has a

trailing digit, it is conventional to suppress its optional zeros
as well as its trivial zeros; the finite digit string remaining is
the terminating base 3 representation of 𝑟.

These conventions are extended to 𝑟 = 0, as follows.
Although the digits in this case are 𝑑

𝑖
= 0 for all 𝑖, in this

exceptional case 𝑑
0
is defined to be both the leading digit and

the trailing digit of the representation. Then its trivial zeros
are all those in places 𝑖 > 0, and its optional zeros are all those
in places 𝑖 < 0; thus, 0 is the terminating representation for
𝑟 = 0.

If d has no trailing digit, it is a nonterminating represen-
tation of 𝑟 and it may be either regular or singular. If d is
singular, there is an integer 𝑘 ≤ ℎ + 1 such that 𝑑

𝑘
∈ {0, 1}

and 𝑑
𝑖
= 2 for all 𝑖 < 𝑘; the digit 𝑑

𝑘
is the pivot digit of d. In

this case there is an alternative, regular base 3 representation
of 𝑟, namely,

e := ⋅ ⋅ ⋅ 𝑒
2
𝑒
1
𝑒
0
⋅ 𝑒
−1
𝑒
−2

⋅ ⋅ ⋅ , (3)

where 𝑒
𝑖
= 𝑑
𝑖
for all 𝑖 > 𝑘, 𝑒

𝑘
= 𝑑
𝑘
+ 1, and 𝑒

𝑖
= 0 for all 𝑖 < 𝑘.

Evidently e is a terminating representation, 𝑒
𝑘
is its trailing

digit, and 3
−𝑘
𝑟 ∈ Z+, so 𝑟 ∈ 3

𝑘Z
+

.
The regular base 3 representation of any nonnegative

rational 𝑞 ∈ Q+ has a recurring block of digits; if 𝑞 has
a singular base 3 representation, this has a recurring 2. For
brevity, any such recurring block can be enclosed in square

brackets, and the subscript 3 can be used to indicate base 3
notation; for instance,

7

3
= 2 ⋅ 1

3
= 2 ⋅ 1[0]

3
= 2 ⋅ 0[2]

3
,

1

2
= 0 ⋅ [1]

3
,

2

5
= 0 ⋅ [1012]

3
.

(4)

The set of all nonnegative rationals with a terminating base 3
representation is

Q
+

3
([0]) = ⋃

𝑖∈Z+

3
−𝑖

Z
+

. (5)

The set of positive rationals with a singular base 3 represen-
tation is simply

Q
+

3
([2]) = Q

+

3
([0]) \ {0} . (6)

The set of positive rationals with base 3 representation
containing a recurring 1 is

Q
+

3
([1]) = ⋃

𝑖∈Z+

3
−𝑖

(Z
+

+
1

2
) . (7)

It will later be found that this set requires particular attention
when members are doubled, because

2Q
+

3
([1]) ⊂ Q

+

3
([2]) ⊂ Q

+

3
([0]) . (8)

Base 3 representation of negative reals is simply achieved
by writing any such number as −𝑟, with 𝑟 ∈ R, 𝑟 > 0, so
that −𝑟 has its base 3 representation adopted from that of 𝑟,
with trivial zeros suppressed and the unary minus operator
applied to precede the leading digit. If 𝑟 has both a regular
and a singular representation, so does −𝑟.

To distinguish between instances of base 3 and base 10
representations, an explicit subscript 3 is normally attached
to the former, while a subscript 10 is normally kept implicit
for the latter. As needed, 𝑟

3
will denote the regular base

3 representation of 𝑟, with 𝑟
∗

3
reserved for the singular

representation when this exists. Finally, ⟦𝑟⟧
3,𝑖

will denote
𝑑
𝑖
, the digit in place 𝑖 of the regular base 3 representation

of 𝑟, while ⟦𝑟⟧
∗

3,𝑖
will denote the corresponding digit in the

singular representation when this exists.

3. Three Sparse Subsets of Z+

Let Z+
3
(𝐷) be the set of all nonnegative integers with termi-

nating base 3 representation in which the only explicit digits
are in𝐷 ⊂ {0, 1, 2}.The three cases of interest are those where
𝐷 is a 2-set. They begin as follows:

Z
+

3
(0, 1)

= {0, 1, 3, 4, 9, 10, 12, 13, 27, 28,

30, 31, 36, 37, 39, 40, 81, . . .} ,

Z
+

3
(0, 2)

= {0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, . . .} ,
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Z
+

3
(1, 2)

= {1, 2, 4, 5, 7, 8, 13, 14, 16, 17, 22, 23, 25, 26, 40, . . .} .

(9)

Some features are obvious. Clearly Z+
3
(0, 2) = 2Z+

3
(0, 1).

When 𝑑 ∈ {0, 1, 2} and 𝐷 = {0, 1, 2} \ {𝑑}, all integers
congruent to 𝑑 (mod 3) are absent from Z+

3
(𝐷). The first

positive integer absent from all three sets is 102
3
= 11, but

it is clear that an increasing proportion of integers will be
missing fromall three sets. Indeed, a simple calculation shows
for any positive integer 𝑛 thatZ+

3
(0, 1) andZ+

3
(0, 2) each have

2
𝑛 members below 3

𝑛, while Z+
3
(1, 2) has 2𝑛+1 − 2 members

below 3
𝑛, so each set is sparse and has asymptotic density 0.

It turns out that these three sets are of considerable
interest when it comes to the presence or absence ofmidpoint
triples, so let us now address the main subject of this paper.

Note that the set Z+
3
(1, 2) contains midpoint triples, such

as {1, 4, 7} and {2, 5, 8}. In fact,Z+
3
(1, 2) is densely packedwith

midpoint triples, since eachmember 𝑎 ∈ Z+
3
(1, 2) is the lower

endpoint of an infinite family of midpoint triples:

{𝑎, 𝑢
𝑛
− 𝑢
𝑚
+ 𝑎, 2𝑢

𝑛
− 2𝑢
𝑚
+ 𝑎}

= (𝑢
𝑛
− 𝑢
𝑚
) {0, 1, 2} + 𝑎 ⊂ Z

+

3
(1, 2)

(10)

for any integer 𝑛 > 𝑚, where 𝑚 is the number of digits in
the terminating base 3 representation of 𝑎 (if 𝑑

ℎ
is the leading

digit in 𝑎
3
, then𝑚 = ℎ + 1), and

𝑢
𝑛
:= 1 + 3 + 3

2

+ ⋅ ⋅ ⋅ + 3
𝑛−1

=
3
𝑛
− 1

2
(11)

is the positive integer with terminating base 3 representation
of 𝑛 digits, all 1. Note that Z+

3
(1) = {𝑢

𝑛
: 𝑛 ≥ 1}, and

appropriate scaling shows that this set is midpoint-free. (The
integers 𝑢

𝑛
are rep-units in base 3. The positive integers with

explicit decimal digits all equal to 1 are the rep-units for base
10, so called by contraction of “repeated unit” [4]. Prime
factorizations of rep-units have been much studied [5, 6].
Clearly, if 𝑚 | 𝑛, then 𝑢

𝑚
| 𝑢
𝑛
. Thus 𝑢

𝑛
can be a prime

number only if 𝑛 is prime, but 𝑢
5
= 11111

3
= 11
2 shows that

this condition is not sufficient. Such observations generalize
to rep-units in any base.)

Not only is every member of Z+
3
(1, 2) the lower endpoint

of infinitely many midpoint triples, it is also the case that any
member greater than 2 is either the midpoint or the upper
endpoint of at least one midpoint triple, depending on the
leading digit of its base 3 representation.

In contrast, it turns out that Z+
3
(0, 1) and Z+

3
(0, 2) are

midpoint-free. To see this, it suffices to show that Z+
3
(0, 1) is

midpoint-free: thenZ+
3
(0, 2)= 2Z+

3
(0, 1) ensures thatZ+

3
(0, 2)

is also midpoint-free. (Long ago, Erdős and Turán [7] noted
that the nonnegative integers with a 2-less base 3 represen-
tation are midpoint-free. The following compact proof is
included for completeness and to typify what follows.)

Claim A. The set Z+
3
(0, 1) is midpoint-free.

Proof. On the contrary, suppose that {𝑎, 𝑏, 𝑐} ⊂ Z+
3
(0, 1) is a

midpoint triple, with 𝑎 < 𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. All digits in
𝑎
3
, 𝑏
3
, 𝑐
3
are in {0, 1} and all digits in (2𝑏)

3
are in {0, 2}. Then

⟦𝑎⟧
3,𝑖

+ ⟦𝑐⟧
3,𝑖

= ⟦2𝑏⟧
3,𝑖
, (12)

for all integers 𝑖, and

⟦2𝑏⟧
3,𝑖

= 0 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑏⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

= 0,

⟦2𝑏⟧
3,𝑖

= 2 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑏⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

= 1.

(13)

Hence, 𝑎 = 𝑏 = 𝑐, a contradiction, so Z+
3
(0, 1) contains no

midpoint triple.

It will now be shown thatZ+
3
(0, 1) is not contained in any

larger midpoint-free subset of Z+.

Claim B. For any positive integer 𝑏 ∈ Z+ \ Z
+

3
(0, 1), there is a

midpoint triple in Z+
3
(0, 1) ∪ {𝑏} with 𝑏 as its midpoint.

Proof. Given 𝑏 ∈ Z+ \ Z
+

3
(0, 1), we seek {𝑎, 𝑐} ⊂ Z+

3
(0, 1) such

that 𝑎 < 𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. Specify the base 3 digits of 𝑎
and 𝑐 as follows:

⟦2𝑏⟧
3,𝑖

= 0 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

= 0,

⟦2𝑏⟧
3,𝑖

= 2 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

= 1,

⟦2𝑏⟧
3,𝑖

= 1 ⇒ ⟦𝑎⟧
3,𝑖

= 0, ⟦𝑐⟧
3,𝑖

= 1.

(14)

This determines integers 𝑎 and 𝑐 such that {𝑎, 𝑐} ⊂ Z+
3
(0, 1)

and 𝑎 + 𝑐 = 2𝑏 since

⟦𝑎⟧
3,𝑖

+ ⟦𝑐⟧
3,𝑖

= ⟦2𝑏⟧
3,𝑖
, (15)

for all 𝑖. At least one digit of (2𝑏)
3
is 1, since 𝑏 ∉ Z+

3
(0, 1), so 𝑎

3

and 𝑐
3
differ in at least one place: then ⟦𝑎⟧

3,𝑖
< ⟦𝑐⟧

3,𝑖
in each

such place, ensuring that 𝑎 < 𝑐. Put 𝑑 := (𝑐 − 𝑎)/2 > 0. Then
𝑐 = 𝑎+ 2𝑑, so 2𝑏 = 𝑎+ 𝑐 = 2𝑎+ 2𝑑, whence 𝑏 = 𝑎+𝑑 > 𝑎 and
𝑐 = 𝑎 + 2𝑑 = 𝑏 + 𝑑 > 𝑏. Thus 𝑎 < 𝑏 < 𝑐.

It will now be shown that extendingZ+
3
(0, 1) by adjoining

any rational of the form 𝑛 + (1/2), with 𝑛 ∈ Z+, always yields
a set which contains a midpoint triple.

Claim C. For any 𝑏 ∈ Z
+

+ (1/2), there is a midpoint triple in
Z+
3
(0, 1) ∪ {𝑏} with 𝑏 as its midpoint.

Proof. Again we seek {𝑎, 𝑐} ⊂ Z+
3
(0, 1), such that 𝑎 < 𝑏 < 𝑐

and 𝑎 + 𝑐 = 2𝑏. In the present case, note that 2𝑏 is an odd
positive integer, so (2𝑏)

3
contains the digit 1 an odd number

of times. Specifying 𝑎 and 𝑐 as in the proof of Claim B, once
again it follows that {𝑎, 𝑐} ⊂ Z+

3
(0, 1) and 𝑎 < 𝑏 < 𝑐.

For instance, the proofs of Claims B and C produce the
decompositions

1201
3
= 100

3
+ 1101

3
, 212

3
= 101

3
+ 111

3
(16)

showing that 23 and 23/2 are the midpoints of the pairs
{9, 37} ⊂ Z+

3
(0, 1) and {10, 13} ⊂ Z+

3
(0, 1), respectively.
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Further, doubling shows that 46 and 23 are the midpoints
of the pairs {18, 74} ⊂ Z+

3
(0, 2) and {20, 26} ⊂ Z+

3
(0, 2),

respectively. From Claims A, B, and C and the doubling
method just illustrated, we have the following.

Theorem 1. The sets Z+
3
(0, 1) and Z+

3
(0, 2) are maximal

midpoint-free subsets of Z+.

4. Two Unexpected Results for Z

Let us now study Z+
3
(0, 1) and Z+

3
(0, 2) as midpoint-free

subsets of Z, the full set of integers. Surprisingly, the results
for the two sets are quite different.

Calculations until now have involved sums of pairs
{𝑎, 𝑐} ⊂ Z

+

3
(0, 1), so it has been possible to work digit by digit

in base 3 without a carry over digit. When the context is
widened to Z, it seems that carry over digits can no longer
be avoided, so we shall consider blocks of digits rather than
single digits. Let the compact notation 𝑑

×𝑛 (“𝑑 by 𝑛”) denote
a homogeneous block of 𝑛 adjacent digits all equal to 𝑑; thus,
1
×𝑛 denotes the terminating base 3 representation of rep-unit
𝑢
𝑛
. For blocks in which the digits are not all equal we simply

abut such expressionswith𝑑×1 = 𝑑 as a natural simplification.
To illustrate, consider the integer

𝑎
3
:= 1222202111001121100 = 12

×4

021
×3

0
×2

1
×2

21
×2

0
×2

.

(17)

Let us find integers 𝑏, 𝑐 ∈ Z
+

3
(0, 1) such that 𝑎 + 2𝑏 = 𝑐.

Regarding 𝑎
3
as a string of homogeneous blocks, we choose

matching blocks for (2𝑏)
3
so that

(2𝑏)
3
:= 2000020222222202200 = 20

×4

202
×7

02
×2

0
×2

. (18)

Calculating from right to left, base 3 arithmetic for 𝑎
3
+ (2𝑏)

3

yields successively the following blocks, with each carry over
digit indicated parenthetically:

0
×2

+ 0
×2

= 0
×2

,

1
×2

+ 2
×2

= (1) 10,

2 + 0 + (1) = (1) 0,

1
×2

+ 2
×2

+ (1) = (1)1
×2

,

0
×2

+ 2
×2

+ (1) = (1) 0
×2

,

1
×3

+ 2
×3

+ (1) = (1) 1
×3

,

2 + 0 + (1) = (1) 0,

0 + 2 + (1) = (1) 0,

2
×4

+ 0
×4

+ (1) = (1) 0
×4

,

1 + 2 + (1) = (1) 1.

(19)

Assembling these blocks yields

𝑎
3
+ (2𝑏)

3
= 1
×2

| 0
×4

| 0 | 0 | 1
×3

| 0
×2

| 1
×2

| 0 | 10 | 0
×2

.

(20)

After simplifying we have

10
×4

101
×7

01
×2

0
×2

= 1000010111111101100 = 𝑏
3
,

1
×2

0
×6

1
×3

0
×2

1
×2

010
×3

= 11000000111001101000 = 𝑐
3
,

(21)

so 𝑎 + 2𝑏 = 𝑐 and 𝑏, 𝑐 ∈ Z
+

3
(0, 1) as desired. This calculation

models the proof of the following.

Claim D. For any integer 𝑎 > 0, there is a midpoint triple
in Z+
3
(0, 1) ∪ {−𝑎} with the negative integer −𝑎 as its lower

endpoint.

Proof. Given any positive integer 𝑎, we seek {𝑏, 𝑐} ⊂ Z+
3
(0, 1),

such that −𝑎 < 𝑏 < 𝑐 and −𝑎 + 𝑐 = 2𝑏, so 𝑎 + 2𝑏 = 𝑐. Partition
𝑎
3
into its homogeneous blocks 𝐴

𝑖
, so

𝑎
3
= 𝐴
𝑚
⋅ ⋅ ⋅ 𝐴
𝑖
⋅ ⋅ ⋅ 𝐴
1
𝐴
0

(22)

and seek corresponding blocks 𝐵
𝑖
and 𝐶

𝑖
to construct 𝑏

3
and

𝑐
3
.
If 𝑎
3
has a terminal block𝐴

0
= 0
×𝑛, assign 𝑏

3
the terminal

block 𝐵
0
= 0
×𝑛, so 𝑐

3
has the terminal block 𝐶

0
= 0
×𝑛

=

𝐴
0
+ 2𝐵
0
. If 𝑎
3
has a nonterminal block 𝐴

𝑖
= 0
×𝑛 for some

𝑖 > 0, assume the sum of the preceding blocks 𝐴
𝑖−1

and
2𝐵
𝑖−1

contributes a carry over digit of 1, and assign 𝑏
3
the

corresponding block 𝐵
𝑖
= 1
×𝑛, so

𝐶
𝑖
= 𝐴
𝑖
+ 2𝐵
𝑖
+ (1) = 0

×𝑛

+ 2
×𝑛

+ (1) = (1) 0
×𝑛

. (23)

As 2×𝑛 + (1) corresponds to 2𝑢
𝑛
+ 1 = (3

𝑛+1
− 1) + 1 = 3

𝑛+1,
the computation is justified.

If 𝑎
3
has a block 𝐴

𝑖
= 1
×𝑛, assign 𝑏

3
the corresponding

block 𝐵
𝑖
= 1
×𝑛, so 𝑐

3
has the corresponding block 𝐶

𝑖
= 𝐴
𝑖
+

2𝐵
𝑖
+ (𝛿) = (1)1

×(𝑛−1)

0 + (𝛿), where the carry over digit 𝛿 is
either 0 or 1, so 𝐶

𝑖
= (1)1

×(𝑛−1)

0 or (1)1×𝑛, respectively. This
holds since the sum 1

×𝑛
+2
×𝑛 corresponds to 𝑢

𝑛
+2𝑢
𝑛
= 3𝑢
𝑛
=

𝑢
𝑛+1

− 𝑢
1
and 1
×𝑛

+ 2
×𝑛

+ (1) corresponds to 3𝑢
𝑛
+ 1 = 𝑢

𝑛+1
.

If 𝑎
3
has a terminal block 𝐴

0
= 2
×𝑛, assign 𝑏

3
the block

𝐵
0
= 0
×(𝑛−1)

1, so 𝑐
3
has terminal block 𝐶

0
= 𝐴
0
+ 2𝐵
0

=

(1)0
×(𝑛−1)

1, since the sum 2
×𝑛

+ 0
×(𝑛−1)

2 corresponds to 2𝑢
𝑛
+

2 = (3
𝑛+1

− 1) + 2 = 3
𝑛+1

+ 1. Similarly if 𝐴
1
𝐴
0
= 2
×𝑛
0
×𝑚,

assign 𝑏
3
the corresponding blocks 𝐵

1
𝐵
0
= 0
×(𝑛−1)

10
×𝑚; then

𝑐
3
has the blocks 𝐶

1
𝐶
0
= (1)0

×(𝑛−1)

10
×𝑚. Otherwise, if 𝑎

3
has

a nonterminal block 𝐴
𝑖
= 2
×𝑛 for some 𝑖 > 0, assume that

𝐴
𝑖−1

+ 2𝐵
𝑖−1

yields a carry over digit 1, and assign 𝑏
3
the

block 𝐵
𝑖
= 0
×𝑛, so 𝑐

3
has 𝐶
𝑖
= 𝐴
𝑖
+ 2𝐵
𝑖
+ (1) = (1)0

×𝑛.
For 𝑖 > 0note that the only case inwhich𝐴

𝑖−1
+2𝐵
𝑖−1

does
not contribute a carry over digit 1 to 𝐴

𝑖
+ 2𝐵
𝑖
is when 𝑖 = 1

and 𝑎
3
has terminal block𝐴

0
= 0
×𝑛.Thus, all our assumptions

about carry over digits are justified a posteriori.

Claim E. For any integer 𝑛 > 0, there is a midpoint triple in
Z+
3
(0, 2)∪{−𝑛} if and only if 𝑛 is even, and then−𝑛 is the lower

endpoint of the triple.

Proof. By doubling, it follows from Claim D that, for any
integer 𝑎 > 0, there is a midpoint triple in Z+

3
(0, 2) ∪
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{−2𝑎}. However, we claim that there is no midpoint triple in
Z+
3
(0, 2) ∪ {−2𝑎 + 1}. On the contrary, suppose −2𝑎 + 1 forms

a midpoint triple with the pair {𝑏, 𝑐} ⊂ Z+
3
(0, 2). Without loss

of generality, −2𝑎 + 1 < 𝑏 < 𝑐 and (−2𝑎 + 1) + 𝑐 = 2𝑏, so
2𝑎 + 2𝑏 − 1 = 𝑐: this is impossible, since 2𝑎 + 2𝑏 − 1 is odd
and 𝑐 is even. It follows thatZ+

3
(0, 2) ∪ {−2𝑎 + 1} is midpoint-

free.

Claim F. The set Z+
3
(0, 2) ∪ −(Z+

3
(0, 2) + 1) is midpoint-free.

Proof. The two sets forming this union are certainly
midpoint-free, so any midpoint triple in the union must
have two members in one set and one member in the other.
Claim E shows that there is no midpoint triple with exactly
one member in −(Z+

3
(0, 2) + 1), since this set only contains

odd negative integers. So suppose there is a midpoint triple
{−𝑎, −𝑏, 𝑐} with exactly one member 𝑐 ∈ Z+

3
(0, 2). Then

{𝑎 − 1, 𝑏 − 1, −𝑐 − 1} is a midpoint triple in

− (Z
+

3
(0, 2) ∪ − (Z

+

3
(0, 2) + 1)) − 1

= Z
+

3
(0, 2) ∪ − (Z

+

3
(0, 2) + 1)

(24)

with exactly one member in −(Z+
3
(0, 2) + 1), the case ruled

out by Claim E.

Since Z+
3
(0, 2) is a maximal midpoint-free subset of Z+

by Theorem 1, clearly Z+
3
(0, 2) + 1 is a maximal midpoint-

free subset of Z+ + 1 = Z+ \ {0}. Note that the members of
Z+
3
(0, 2) + 1 are precisely those positive integers 𝑛 for which

the trailing digit of 𝑛
3
is 1, and all other digits are in {0, 2}.

With Claims E and F, it follows thatZ+
3
(0, 2)∪−(Z+

3
(0, 2)+1)

is a maximal midpoint-free subset of Z = Z+ ∪ −(Z+ \ {0}).
Combined with Claim D, this proves the following.

Theorem 2. The sets Z+
3
(0, 1) and Z+

3
(0, 2) ∪ −(Z+

3
(0, 2) + 1)

are maximal midpoint-free subsets of Z.

5. Midpoint-Free Subsets of Q+

Now let us consider the corresponding subsets Q+
3
(𝐷) of the

nonnegative rationals Q+, namely, the subsets comprising
those members with a regular base 3 representation in which
each digit, after suppression of all trivial and optional zeros,
is in 𝐷 ⊂ {0, 1, 2}. The three cases of interest are those where
𝐷 is a 2-set.

As expected, Q+
3
(1, 2) is densely packed with midpoint

triples. This follows from the observation that each rational
𝑞 ∈ Q+

3
(1, 2) is the lower endpoint of an infinite family of

midpoint triples,

{𝑞, 𝑢
𝑛
− 𝑢
𝑚
+ 𝑞, 2𝑢

𝑛
− 2𝑢
𝑚
+ 𝑞}

= (𝑢
𝑛
− 𝑢
𝑚
) {0, 1, 2} + 𝑞 ⊂ Q

+

3
(1, 2)

(25)

for any integer 𝑛 > 𝑚, where 𝑢
𝑛
is the 𝑛-digit base 3 rep-unit

and 𝑚 = ℎ + 1, where 𝑑
ℎ
is the leading digit of the regular

base 3 representation 𝑞
3
.

Next, consider Q+
3
(0, 1). The details are a little more

complicated than in the integer context, since allowance

must be made for singular representations when particular
members ofQ+

3
(0, 1) are doubled.

Claim G. The setQ+
3
(0, 1) \Q+

3
([1]) is midpoint-free.

Proof. If 𝑏 ∈ Q+
3
(0, 1) \ Q+

3
([1]) and 𝑏 > 0, all digits of (2𝑏)

3

are in {0, 2}. They uniquely determine the digits of 𝑎
3
and 𝑐
3

such that {𝑎, 𝑐} ⊂ Q+
3
(0, 1) \ Q+

3
([1]) and 𝑎 + 𝑐 = 2𝑏. As in

the proof of Claim A, they force 𝑎 = 𝑏 = 𝑐. Hence, there is no
midpoint triple {𝑎, 𝑏, 𝑐} ⊂ Q+

3
(0, 1) \Q+

3
([1]).

Claim H. Any 𝑏 ∈ Q+
3
([1]) is the midpoint of a triple with

both its endpoints in the setQ+
3
(0, 1) ∩Q+

3
([0]).

Proof. We seek {𝑎, 𝑐} ⊂ Q+
3
(0, 1) \Q+

3
([1]) with 𝑎 < 𝑏 < 𝑐 and

𝑎 + 𝑐 = 2𝑏. Then 𝑎
3
and 𝑐
3
are uniquely determined by

⟦𝑎⟧
3,𝑖

+ ⟦𝑐⟧
3,𝑖

= ⟦2𝑏⟧
3,𝑖
, ⟦𝑎⟧

3,𝑖
≤ ⟦𝑐⟧

3,𝑖
(26)

for all 𝑖. Since 𝑏 ∈ Q+
3
([1]), then 3

𝑘
𝑏 ∈ Z+ + (1/2) for some

𝑘 ∈ Z+, so

2𝑏 ∈ 3
−𝑘

(2Z
+

+ 1) . (27)

It follows that (2𝑏)
3
is a terminating representation with an

odd number of digits equal to 1. Then

⟦2𝑏⟧
3,𝑖

= 1 ⇒ ⟦𝑎⟧
3,𝑖

= 0, ⟦𝑐⟧
3,𝑖

= 1

for an odd number of integers 𝑖 ≥ −𝑘;

⟦2𝑏⟧
3,𝑖

= 0 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

= 0 ∀𝑖 < −𝑘.

(28)

Hence, the requiredmidpoint triple {𝑎, 𝑏, 𝑐} exists, and in fact
{𝑎, 𝑐} ⊂ Q+

3
([0]).

In particular, if 𝑏 ∈ Q+
3
([1]) is such that ⟦2𝑏⟧

3,𝑛
= 1 for

some integer 𝑛 and ⟦2𝑏⟧
3,𝑖

= 0 for all 𝑖 ̸= 𝑛, then 𝑏 = 3
𝑛
/2 =

𝑢
𝑛
+ (1/2) and the proof of Claim H determines 𝑎 = 0 and

𝑐 = 2𝑏 = 3
𝑛. Since ⟦𝑏⟧

3,𝑖
= 0 if 𝑖 ≥ 𝑛 and ⟦𝑏⟧

3,𝑖
= 1 if 𝑖 < 𝑛,

we call 𝑏 the base 3 fractional rep-unit with offset 𝑛, denoted
by V
𝑛
. Then V

𝑛
∈ Q+
3
([1]) is the midpoint of the triple with

endpoints {0, 3𝑛} ⊂ Q+
3
(0, 1) ∩Q+

3
([0]).

Positive rationals not in Q+
3
(0, 1) ∪ Q+

3
([1]) also belong

to midpoint triples with endpoints in Q+
3
(0, 1) \ Q+

3
([1]), but

proving this needs care. For instance,

5

16
= 0 ⋅ [0221]

3

⇒
5

8
= 0 ⋅ [12]

3
= 0 ⋅ [0111]

3
+ 0 ⋅ [1101]

3

=
13

80
+
37

80
,

(29)

so {13/80, 5/16, 37/80} is a midpoint triple with endpoints in
Q+
3
(0, 1) \ Q+

3
([1]). This calculation models the proof of the

following general result.

Claim I. Any 𝑏 ∈ Q+ \Q
+

3
(0, 1) is themidpoint of a triple with

both its endpoints in the setQ+
3
(0, 1) \Q+

3
([1]).
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Proof. We seek {𝑎, 𝑐} ⊂ Q+
3
(0, 1) \Q+

3
([1]) with 𝑎 < 𝑏 < 𝑐 and

𝑎 + 𝑐 = 2𝑏. When 𝑏 ∈ Q+
3
([1]), the result follows from Claim

H, so we may now assume that

𝑏 ∈ Q
+

\ (Q
+

3
(0, 1) ∪Q

+

3
([1])) . (30)

Then (2𝑏)
3
has at least one digit 𝑑

𝑗
equal to 1 and its recurring

block, say [𝐷], has at least one digit different from 2. We
require 𝑎

3
and 𝑐
3
to satisfy

⟦𝑎⟧
3,𝑖

+ ⟦𝑐⟧
3,𝑖

= ⟦2𝑏⟧
3,𝑖

(31)

for all 𝑖. Requiring ⟦𝑎⟧
3,𝑖

≤ ⟦𝑐⟧
3,𝑖

for all 𝑖 ≥ 𝑗 ensures that
𝑎 < 𝑐, since

⟦𝑎⟧
3,𝑗

= 0, ⟦𝑐⟧
3,𝑗

= 1. (32)

If the recurring block [𝐷] of (2𝑏)
3
contains 0, then the

recurring blocks of 𝑎
3
and 𝑐
3
also contain 0, so neither 𝑎 nor

𝑐 is in Q+
3
([1]). Now suppose [𝐷] has at least one digit equal

to 1 and none equal to 0. Clearly, in this case we may choose
the integer 𝑗 so that the digit 𝑑

𝑗
= 1 occurs in [𝐷]. If𝐷 has𝑚

digits, then for all 𝑖 ≤ 𝑗 choose

⟦𝑎⟧
3,𝑖

= 0, ⟦𝑐⟧
3,𝑖

= 1 when 𝑖 ≡ 𝑗 mod 2𝑚,

⟦𝑎⟧
3,𝑖

= 1, ⟦𝑐⟧
3,𝑖

= 0 when 𝑖 ≡ 𝑗 + 𝑚 mod 2𝑚,

⟦𝑎⟧
3,𝑖

≤ ⟦𝑐⟧
3,𝑖

otherwise.

(33)

Then 𝑎
3
and 𝑐
3
are uniquely determined, so that 𝑎 < 𝑐 and

each has a recurring block containing 0, so neither 𝑎 nor 𝑐 is
inQ+
3
([1]).

If 𝑞 ∈ Q+ \Q
+

3
(0, 2) then 𝑞

3
has at least one digit equal

to 1, so it follows that (𝑞/2)
3
∈ Q+ \Q

+

3
(0, 1). Claim I shows

that there is a midpoint triple {𝑎, 𝑏, 𝑐} with 𝑏 = 𝑞/2 and
{𝑎, 𝑐} ⊂ Q+

3
(0, 1) \Q+

3
([1]). Then 2{𝑎, 𝑏, 𝑐} is a midpoint triple

with midpoint 𝑞 and endpoints 2{𝑎, 𝑐} ⊂ Q+
3
(0, 2). Hence,

doubling applied to Claims G and I shows that Q+
3
(0, 2) is

midpoint-free, and every 𝑏 ∈ Q+ \Q
+

3
(0, 2) is the midpoint

of a triple with endpoints in Q+
3
(0, 2), so Claims G, H, and I

establish the following.

Theorem 3. The sets Q+
3
(0, 1) \ Q+

3
([1]) and Q+

3
(0, 2) are

maximal midpoint-free subsets ofQ+.

6. Midpoint-Free Subsets of Q

Now considerQ+
3
(0, 1) andQ+

3
(0, 2) as subsets ofQ. The role

ofQ+
3
([1]) is yet more prominent in this context.

Claim J. The setQ+
3
(0, 1) ∩Q+

3
([1]) is midpoint-free.

Proof. Suppose {𝑎, 𝑏, 𝑐} ⊂ Q+
3
(0, 1) ∩ Q+

3
([1]) satisfies 𝑎 <

𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. There is an integer 𝑚 ≥ 0 for which
3
𝑚
{𝑎, 𝑏, 𝑐} ⊂ Z+

3
(0, 1) + (1/2) so

2 ⋅ 3
𝑚

{𝑎, 𝑏, 𝑐} ⊂ 2Z
+

3
(0, 1) + 1. (34)

This contradicts the fact that 2Z+
3
(0, 1) + 1 is midpoint-free,

by Claim A.

Claim K. Any positive rational 𝑏 ∈ Q+
3
([1]) \ Q+

3
(0, 1) is the

midpoint of a triple with endpoints inQ+
3
(0, 1) ∩Q+

3
([1]).

Proof. Given 𝑏, we seek {𝑎, 𝑐} ⊂ Q+
3
(0, 1) ∩Q+

3
([1]), such that

𝑎 < 𝑏 < 𝑐 and 𝑎 + 𝑐 = 2𝑏. There is an integer 𝑚 such that
3
𝑚
𝑏 ∈ Z+ + (1/2), so there is an integer 𝐵 ∈ Z+ \ Z+

3
(0, 1)

such that 3𝑚𝑏 = 𝐵 + (1/2). At least one digit of 𝐵
3
is 2, so at

least one digit of (2𝐵)
3
is 1. Define {𝐴, 𝐶} ⊂ Z+

3
(0, 1) by

⟦2𝐵⟧
3,𝑖

= 0 ⇒ ⟦𝐴⟧
3,𝑖

= ⟦𝐶⟧
3,𝑖

= 0,

⟦2𝐵⟧
3,𝑖

= 1 ⇒ ⟦𝐴⟧
3,𝑖

= 0, ⟦𝐶⟧
3,𝑖

= 1,

⟦2𝐵⟧
3,𝑖

= 2 ⇒ ⟦𝐴⟧
3,𝑖

= ⟦𝐶⟧
3,𝑖

= 1.

(35)

Then ⟦𝐴⟧
3,𝑖

≤ ⟦𝐶⟧
3,𝑖
for all 𝑖, with strict inequality for at least

one 𝑖, so 𝐴 < 𝐶. Also ⟦𝐴⟧
3,𝑖

+ ⟦𝐶⟧
3,𝑖

= ⟦2𝐵⟧
3,𝑖

for all 𝑖, so
𝐴 + 𝐶 = 2𝐵. Finally, let

3
𝑚

{𝑎, 𝑏, 𝑐} = {𝐴, 𝐵, 𝐶} +
1

2
. (36)

Then 𝑎 + 𝑐 = 2𝑏 and {𝑎, 𝑐} ⊂ Q+
3
(0, 1) ∩Q+

3
([1]).

Claim L. The set (Q+
3
(0, 1) \Q+

3
([1])) ∪ −(Q+

3
(0, 1)∩Q+

3
([1]))

is midpoint-free.

Proof. By Claims G and J, if the specified set contains a
midpoint triple, twomembers of the triplemust have one sign
and the third member must have the opposite sign. Suppose
{𝑎} ⊂ Q+

3
(0, 1) ∩ Q+

3
([1]) and {𝑏, 𝑐} ⊂ Q+

3
(0, 1) \ Q+

3
([1]) are

such that −𝑎 < 𝑏 < 𝑐 and 𝑎 + 2𝑏 = 𝑐. Since 𝑎
3
, (2𝑏)
3
, and 𝑐

3

are eventually periodic, there is an integer 𝑚 such that their
digits in places 𝑖 ≤ 𝑚 are purely periodic, and

⟦𝑎⟧
3,𝑖

= 1, ⟦2𝑏⟧
3,𝑖

∈ {0, 2} , ⟦𝑐⟧
3,𝑖

∈ {0, 1}

∀𝑖 ≤ 𝑚.

(37)

Since 𝑐 ∉ Q+
3
([1]), there is a 𝑗 ≤ 𝑚 such that ⟦𝑐⟧

3,𝑗
= 0 and

therefore ⟦2𝑏⟧
3,𝑖

cannot be equal to 0 for all 𝑖 ≤ 𝑚. On the
other hand, ⟦2𝑏⟧

3,𝑖
cannot be equal to 2 for all 𝑖 ≤ 𝑚 since

𝑏 ∉ Q+
3
([1]). Hence the recurring block [𝐷] of (2𝑏)

3
contains

0 and 2, so ⟦2𝑏⟧
3,𝑘

= 0, ⟦2𝑏⟧
3,𝑘−1

= 2 for some 𝑘 ≤ 𝑚. But
⟦𝑎⟧
3,𝑘

= ⟦𝑎⟧
3,𝑘−1

= 1, so ⟦𝑎⟧
3,𝑘−1

+ ⟦2𝑏⟧
3,𝑘−1

has a “carry
over” of 1, regardless of whether or not the digits in place 𝑘−2
contribute any “carry over”. Then

⟦𝑐⟧
3,𝑘

= ⟦𝑎⟧
3,𝑘

+ ⟦2𝑏⟧
3,𝑘

+ (1) = 2 ∉ {0, 1} . (38)

By this contradiction, there is no midpoint triple of the
proposed type. A similar but simpler argument shows that
there are no subsets {𝑎, 𝑏} ⊂ Q+

3
(0, 1) ∩ Q+

3
([1]) and {𝑐} ⊂

Q+
3
(0, 1) \Q+

3
([1]) such that −𝑎 < −𝑏 < 𝑐 and 𝑎 = 2𝑏 + 𝑐.

ClaimM. For any positive rational 𝑎 ∈ Q+ \Q+
3
([1]) there is a

midpoint triple in (Q+
3
(0, 1) \ Q+

3
([1])) ∪ {−𝑎}, with −𝑎 as its

lower endpoint.
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Proof. Given 𝑎, we seek {𝑏, 𝑐} ⊂ Q+
3
(0, 1) \ Q+

3
([1]) such that

−𝑎 < 𝑏 < 𝑐 and 𝑎 + 2𝑏 = 𝑐. Note that if the triple {𝑎, 𝑏, 𝑐}

has all the required properties, the scaled triple 3
𝑚
{𝑎, 𝑏, 𝑐}

also has all the required properties, for any integer 𝑚. Let
us assume, without loss of generality, that the digits of 𝑎

3

in negative places are purely periodic, and partitioning into
homogeneous blocks 𝐴

𝑖
yields

𝑎
3
= 𝐴
ℎ
⋅ ⋅ ⋅ 𝐴
1
𝐴
0
⋅ [𝐴
−1
𝐴
−2

⋅ ⋅ ⋅ 𝐴
−𝑘
] (39)

for suitable integers ℎ ≥ 0, 𝑘 > 0. As 𝑎 ∉ Q+
3
([1]), if 𝑘 = 1,

then 𝐴
−1

= 0 so 𝑎 ∈ Z+ and a suitable set {𝑏, 𝑐} exists, by
Claim D.

Now suppose 𝑘 ≥ 2 and 𝑎
3
has at least one negative place

digit which is nonzero. If 𝑎
3
has no negative place digit equal

to 2, let 𝑎 = 𝐴 + 𝑞, where 𝐴 ∈ Z+ and 𝑞 ∈ Q+
3
(0, 1) \

Q+
3
([1]), 0 < 𝑞 < 1 are the integer part and fractional

part of 𝑎, respectively. The proof of Claim D yields integers
𝐵, 𝐶 ∈ Z+

3
(0, 1), such that {−𝐴, 𝐵, 𝐶} is a midpoint triple.

Choose 𝑏 = 𝐵, 𝑐 = 𝐶 + 𝑞. Then

{−𝑎, 𝑏, 𝑐} = {−𝐴 − 𝑞, 𝐵, 𝐶 + 𝑞} (40)

is a midpoint triple with {𝑏, 𝑐} ⊂ Q+
3
(0, 1) \Q+

3
([1]).

Finally, suppose 𝐴
−𝑗

= 2
×𝑛 for at least one 𝑗 > 0. Define

homogeneous blocks 𝐵
𝑖
and 𝐶

𝑖
for all 𝑖 as follows:

𝐴
𝑖
= 0
×𝑛

⇒ 𝐵
𝑖
= 1
×𝑛

, 𝐶
𝑖
= 0
×𝑛

𝐴
𝑖
= 1
×𝑛

⇒ 𝐵
𝑖
= 1
×𝑛

, 𝐶
𝑖
= 1
×𝑛

𝐴
𝑖
= 2
×𝑛

⇒ 𝐵
𝑖
= 0
×𝑛

, 𝐶
𝑖
= 0
×𝑛

.

(41)

Assuming a carry over digit equal to 1, note that checks as in
the proof of Claim D justify the calculations

0
×𝑛

+ 2
×𝑛

+ (1) = (1) 0
×𝑛

, 1
×𝑛

+ 2
×𝑛

+ (1) = (1) 1
×𝑛

,

(42)

so in all cases we have 𝐴
𝑖
+ 2𝐵
𝑖
+ (1) = (1)𝐶

𝑖
. Choose

𝑏
3
= 𝐵
ℎ
⋅ ⋅ ⋅ 𝐵
1
𝐵
0
⋅ [𝐵
−1
𝐵
−2

⋅ ⋅ ⋅ 𝐵
−𝑘
] ,

𝑐
3
= (1) 𝐶

ℎ
⋅ ⋅ ⋅ 𝐶
1
𝐶
0
⋅ [𝐶
−1
𝐶
−2

⋅ ⋅ ⋅ 𝐶
−𝑘
] .

(43)

Then 𝑎 + 2𝑏 = 𝑐 and {𝑏, 𝑐} ⊂ Q+
3
(0, 1). Also 𝐵

−𝑗
= 𝐶
−𝑗

= 0
×𝑛

ensures that {𝑏, 𝑐} ⊂ Q+
3
(0, 1) \Q+

3
([1]), as required.

For instance, beginning with

𝑎 = 2 ⋅ [201]
3
=

71

26
∈ Q
+

\Q
+

3
([1]) , (44)

the proof of Claim M constructs a midpoint triple {−𝑎, 𝑏, 𝑐}
with

𝑏 = 0 ⋅ [011]
3
=

2

13
∈ Q
+

3
(0, 1) \Q

+

3
([1]) ,

𝑐 = 10 ⋅ [001]
3
=

79

26
∈ Q
+

3
(0, 1) \Q

+

3
([1]) .

(45)

However, if we begin with

𝑎 = 2 ⋅ [101]
3
=

31

13
∈ Q
+

\Q
+

3
([1]) , (46)

the construction falls back to Claim D, resulting in 𝑏 = 1 and
𝑐 = 57/13.

It now follows from Claims I, K, L, and M that the set
(Q
+

3
(0, 1) \Q

+

3
([1])) ∪ − (Q

+

3
(0, 1) ∩Q

+

3
([1])) (47)

is a maximal midpoint-free subset ofQ.This settles midpoint
questions aboutQ+

3
(0, 1) as a subset ofQ.

What is the situation for Q+
3
(0, 2)? If 𝑞 ∈ Q+

3
(0, 2) then

the recurring block of 𝑞
3
must have at least one digit equal

to 0. Hence, there must be at least one digit equal to 0 in
the recurring block of (𝑞/2)

3
, so 𝑞/2 ∈ Q+

3
(0, 1) \ Q+

3
([1]): it

follows that 2(Q+
3
(0, 1) \ Q+

3
([1])) = Q+

3
(0, 2). Again, if there

is some𝑚 ∈ Z+, such that 3𝑚𝑞 ∈ Z+
3
(0, 2) + 1, it follows that

𝑞
3
is a terminating representation with trailing digit 1 and all

other digits in {0, 2}. Hence,
𝑞

2
∈ Q
+

3
(0, 1) ∩Q

+

3
([1]) . (48)

The converse also holds, so
2 (Q
+

3
(0, 1) ∩Q

+

3
([1])) = Q

+

3
(0, 2; 1) , (49)

where Q+
3
(0, 2; 1) is the set of positive rationals which have a

terminating base 3 representation with trailing digit 1 and all
other digits in {0, 2}, so

Q
+

3
(0, 2; 1) = ⋃

𝑖∈Z+

3
−𝑖

(Z
+

3
(0, 2) + 1) . (50)

In passing, note that Z+
3
(0, 2) + 1 = Q+

3
(0, 2; 1) ∩ Z+. By

doubling, it now follows from Claim L that the set
Q
+

3
(0, 2) ∪ −Q

+

3
(0, 2; 1) (51)

is midpoint-free.

Claim N. Any rational 𝑏 ∈ Q+ \ Q+
3
(0, 2) is the midpoint of a

triple with both its endpoints inQ+
3
(0, 2).

Proof. If 𝑏 ∈ Q+ \Q+
3
(0, 2), then 𝑏/2 ∉ Q+

3
(0, 1), so 𝑏/2 is the

midpoint of a triple with endpoints in Q+
3
(0, 1) \ Q+

3
([1]), by

Claim I. By doubling, 𝑏 is the midpoint of a triple with both
its endpoints in the setQ+

3
(0, 2).

Claim O. For any rational 𝑎 ∈ Q+ \ Q+
3
(0, 2; 1), there is

a midpoint triple in Q+
3
(0, 2) ∪ {−𝑎} with −𝑎 as its lower

endpoint.

Proof. If 𝑎 ∈ Q+ \ Q+
3
(0, 2; 1) and 𝑎 > 0, then 𝑎/2 ∉ Q+

3
([1]),

so there is a midpoint triple in Q+
3
(0, 1) \ Q+

3
([1]) ∪ {−𝑎/2}

with −𝑎/2 as its lower endpoint, by Claim M. By doubling,
Q+
3
(0, 2)∪ {−𝑎} has a midpoint triple with lower endpoint −𝑎.

The preceding results now fully establish the following.

Theorem 4. The two sets
(Q
+

3
(0, 1) \Q

+

3
([1])) ∪ − (Q

+

3
(0, 1) ∩Q

+

3
([1])) ,

Q
+

3
(0, 2) ∪ −Q

+

3
(0, 2; 1)

(52)

are both maximal midpoint-free subsets of Q.
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7. Midpoint-Free Subsets of R+ and R

Now consider R+
3
(0, 1) and R+

3
(0, 2). These sets are uncount-

able, while their maximal rational subsets Q+
3
(0, 1) and

Q+
3
(0, 2) are countable, yet no essentially new considerations

arise in extending the results of the previous two sections
from Q+ to R+ and from Q to R. Noting that R+

3
([1]) =

Q+
3
([1]) and R+

3
(0, 2; 1) = Q+

3
(0, 2; 1), it suffices to state the

end results for this wider context.

Theorem 5. The setsR+
3
(0, 1) \R+

3
([1]) andR+

3
(0, 2) are both

maximal midpoint-free subsets of R+.

Theorem 6. The two sets

(R
+

3
(0, 1) \R

+

3
([1])) ∪ − (R

+

3
(0, 1) ∩R

+

3
([1])) ,

R
+

3
(0, 2) ∪ −R

+

3
(0, 2; 1)

(53)

are both maximal midpoint-free subsets of R.
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